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Introduction 
 
This analysis aimed to classify pitch types (Fastball, Slider, Curveball, Changeup) using 
various machine learning models, evaluate the performance of those models, and 
explore the role of different features in making accurate predictions. To achieve this, 
multiple methodologies and visualization techniques were employed, offering deep 
insights into the nuances of pitch classification. The results highlight the journey from 
using a Random Forest model as a baseline to leveraging XGBoost as the optimized 
model through hyperparameter tuning and feature engineering. This report includes the 
critical methodologies, challenges encountered, and advanced interpretative techniques 
used to achieve robust results. 

Critical Thinking About the Problem 
 
1. Class Imbalance 

• Problem: 
The dataset exhibited class imbalance, with Fastballs being significantly 
overrepresented compared to other pitch types. 

• Solution: 
To address this, SMOTE (Synthetic Minority Oversampling Technique) was 
applied, which generated synthetic samples for the minority class. This approach 
significantly improved recall for overrepresented pitch types like Fastballs, 
ensuring a more balanced classification performance. 

2. Feature Redundancy and Correlation 

• Problem: 
High correlation between certain features, such as pitch_initial_speed and 
break_z, introduced redundancy and risked overfitting in simpler models like 
Random Forest. 

• Solution: 

o Advanced models like XGBoost effectively handled feature interactions, 
mitigating the risks of overfitting. 

o Correlation matrices were employed during feature engineering to identify 
and address multicollinearity issues, allowing for a more robust feature 
set. 



3. Interpretability vs. Accuracy 

• Problem: 
While Random Forest provided interpretability via feature importance rankings, it 
lacked the ability to capture intricate relationships within the data, resulting in 
lower accuracy. 

• Solution: 

o Transitioning to XGBoost improved classification accuracy by capturing 
complex feature interactions. 

o To retain interpretability, tools such as SHAP (SHapley Additive 
exPlanations) and Partial Dependence Plots (PDP) were leveraged, 
offering insights into the model’s decision-making process without 
sacrificing performance. 

These challenges and their solutions were instrumental in shaping the analytical 
progression. The transition from Random Forest to a fully tuned XGBoost model 
highlighted the need for advanced techniques to address the complexities of pitch 
classification effectively. 

Implementation of Analytical Methodologies 
 
The analysis employed a wide range of methodologies and interpretive techniques, each 
addressing specific aspects of the classification problem. Corresponding screenshots for 
each visualization are referenced below. 
 

Partial Dependence Plots (PDP) 

Partial Dependence Plots (PDPs) were employed to examine the marginal effects of key 
features on the probability of predicting each pitch type. These visualizations provided 
critical insights into how individual predictors influenced the model's classification 
outcomes. 

Key Observations: 

1. Pitch Initial Speed 

o Critical Influence: Pitch initial speed emerged as a dominant feature, 
particularly for Fastball classification. 

o Fastball Threshold: A sharp increase in prediction probability for Fastballs 
was observed at speeds above 90 mph, indicating a clear threshold effect 
where higher velocities strongly differentiate Fastballs from other pitch 
types. 



o Non-Linear Effects for Other Pitches: 

§ For Changeups, slower pitch speeds (<85 mph) were predictive. 

§ Sliders showed moderate influence from speed but were more 
dependent on break characteristics. 

2. Horizontal Break (break_x) 

o Differentiation of Sliders and Curveballs: 

§ Sliders: Strongly associated with horizontal break values between 
-6 to -4, indicating lateral movement as a defining characteristic. 

§ Curveballs: Exhibited horizontal break values closer to 0, with less 
lateral movement compared to Sliders. 

o Significance in Mixed Zones: PDPs revealed that in regions where 
horizontal breaks overlapped, other features like vertical break or spin 
rate became essential for accurate pitch classification. 

3. Vertical Break (break_z) 

o Classification of Changeups and Sliders: 

§ Sliders: Characterized by a vertical break range around -5 to -2, 
indicative of sharp downward motion. 

§ Changeups: Showed broader vertical break ranges, reflecting their 
varied use cases and trajectories. 

o Non-Linearity: PDPs demonstrated that vertical break impacts 
classification differently across pitch types, underscoring the importance 
of feature interactions in the model. 

4. Spin Rate (System B-Specific): 

o Critical Role in Curveball and Slider Identification: 

§ Curveballs were associated with higher spin rates (~2500 RPM), 
reflecting their reliance on rotational movement for break. 

§ Sliders exhibited a distinct range (~2000–2200 RPM), aiding in 
separating them from both Fastballs and Curveballs. 

Implications for Model Interpretability: 

• The insights from PDPs highlight the importance of specific feature thresholds 
(e.g., pitch speed >90 mph for Fastballs, horizontal break for Sliders). 



• Non-linear effects and feature interactions, such as the combined influence of 
spin rate and vertical break, underscore the effectiveness of the XGBoost 
model's ability to capture these dynamics. 

• These observations not only improve classification accuracy but also enhance 
model interpretability, allowing for more informed adjustments in feature 
engineering. 

This deeper analysis reinforces the utility of PDPs in validating feature importance and 
their contributions to distinguishing between closely related pitch types. 



	
					

Confusion Matrices 

Confusion matrices were employed to evaluate the accuracy of predictions across 
different pitch types, highlighting areas of strength and misclassification within the 
models. 

Key Findings: 

1. Random Forest 

o Challenges: 

§ High misclassification rates for Changeups, frequently confused 
with Sliders. 

§ Fastballs achieved moderate recall but suffered from false 
positives, particularly with Curveballs. 

o This revealed the model's limitations in distinguishing between pitches 
with overlapping characteristics. 

2. XGBoost 

o Improvements: 

§ Achieved substantial performance gains across all pitch types. 

§ Changeups experienced a 15% increase in recall, significantly 
reducing their misclassification rates. 

§ Overall, fewer false positives were observed, particularly in 
separating Fastballs and Curveballs. 

This analysis demonstrated XGBoost's ability to better capture the nuances of pitch 
classification, addressing the shortcomings observed in the Random Forest model. 



	
					

ROC Curves 

ROC curves were used to evaluate the trade-off between true positive rates (sensitivity) 
and false positive rates across pitch types, providing a comprehensive measure of 
classification performance. 

Key Findings: 

1. Random Forest 

o Challenges: 

§ ROC curves exhibited poor separability for certain pitch types, 
particularly Fastballs (AUC = 0.22), indicating the model struggled 
to differentiate them from other pitches. 

§ Sliders and Curveballs performed slightly better (AUC ~0.51-0.55) 
but still lacked consistency in classification accuracy. 

2. XGBoost 

o Improvements: 

§ Steep improvements in ROC curves, demonstrating superior 
classification performance. 

§ Sliders and Curveballs achieved AUC ~0.99-1.00, indicating near-
perfect separability. 

§ Changeups saw marked gains, with an AUC of 0.85, reflecting 
better balance between sensitivity and specificity. 

This analysis highlighted XGBoost's enhanced ability to distinguish between pitch types, 
addressing the limitations observed in the Random Forest model. The near-perfect AUC 
scores across most pitch types underscored the effectiveness of hyperparameter tuning 
and feature engineering in improving classification accuracy. 



 

	
					

Correlation Matrices 

Correlation matrices were used to explore interdependencies between features and 
assess their impact on model performance. 

Key Findings: 

1. System A 

o Weak correlations between key features such as pitch_initial_speed and 
break features were observed. 

o These weak interdependencies contributed to suboptimal performance, 
as the features failed to provide sufficient interaction for effective 
classification. 

2. System B 

o Stronger correlations were identified, particularly between: 

§ Pitch Initial Speed and Vertical Break (break_z) 

§ Spin Rate and Break Features 



o These correlations reflected better feature engineering and contributed to 
the superior classification performance of System B. 

	
					

Clustering and Dimensionality Reduction (PCA and t-SNE) 

Clustering and dimensionality reduction techniques, including Principal Component 
Analysis (PCA) and t-SNE, were used to evaluate the tuned XGBoost model’s ability to 
differentiate pitch types. These methods provided insight into how effectively the model 
captured feature separations and identified distinct clusters for each pitch type. 

Key Findings: 

1. PCA (Principal Component Analysis): 

o Distinct Clusters: 

§ The PCA visualization for the tuned XGBoost model showed clear 
and well-separated clusters for each pitch type, including 
Fastballs, Sliders, Curveballs, and Changeups. 

§ The yellow cluster (Fastballs) stood out with minimal overlap, 
demonstrating that the model captured their unique characteristics 
effectively. 

o Feature Representation: 

§ Principal components combined pitch speed, break 
characteristics, and spin rate in ways that enhanced separability, 
as evidenced by the tight clustering of Sliders and Curveballs. 

2. t-SNE (t-distributed Stochastic Neighbor Embedding): 

o Better Resolution for Overlapping Classes: 

§ t-SNE visualizations revealed improved separations, particularly 
for Sliders and Changeups, which are often difficult to distinguish 
due to their overlapping feature sets. 



§ Fastballs and Curveballs also formed tightly packed, distinct 
clusters, underscoring the model’s success in learning nuanced 
relationships between features. 

o Non-linear Feature Interactions: 

§ The t-SNE algorithm emphasized the model’s ability to account for 
non-linear feature interactions, a strength of XGBoost, by forming 
compact and isolated clusters. 

3. Interpretability of Clusters: 

o The distinct clustering patterns observed in both PCA and t-SNE confirm 
that the hyperparameter-tuned XGBoost model is well-suited for handling 
complex pitch classification tasks. 

o The clear separation between pitch types highlights the success of 
advanced feature engineering and the effectiveness of SMOTE in 
mitigating class imbalance. 

Conclusion: 

The clustering patterns from PCA and t-SNE demonstrate the tuned XGBoost model’s 
robustness in distinguishing pitch types. Compared to earlier iterations or alternative 
models, the tuned XGBoost effectively capitalized on non-linear feature interactions and 
advanced feature representation techniques. These results reinforce the conclusion that 
XGBoost, with optimized hyperparameters and proper preprocessing, provides a 
superior solution for pitch classification. 

 
	

	



	
					

Hierarchical Clustering (Dendrograms) 

Hierarchical clustering, depicted through dendrograms, provided a visual representation 
of the relationships between pitch types based on their feature similarities. This analysis 
is essential for understanding how well the model captures the natural groupings of data. 

Key Findings: 

1. System A (XGBoost Tuned Model): 

o The dendrogram revealed clear, well-defined clusters, particularly 
between Fastballs, Sliders, and Curveballs. 

o The branch lengths varied slightly within pitch types but were generally 
consistent, indicating a reasonable level of feature harmonization. 
However, Changeups exhibited more variance in clustering, suggesting 
occasional overlaps in feature space with other pitches. 

o The grouping of Sliders and Curveballs was especially prominent, 
reflecting how these pitch types share some similar traits (e.g., break and 
spin rate) yet remain distinguishable with sufficient data. 

2. System B (XGBoost Tuned Model with Optimized Feature Set): 

o The dendrogram displayed greater uniformity in branch lengths across 
pitch types, signifying consistent feature interactions and alignment with 
classification objectives. 

o The clustering for Changeups improved significantly, with more distinct 
separation from other pitch types, demonstrating the impact of feature 
engineering and hyperparameter tuning. 

o The structure highlighted the model's ability to leverage feature 
combinations (e.g., break and initial speed) to achieve better separation 
of ambiguous pitch types, such as Sliders and Changeups. 



Insights: 

• The dendrograms validated the effectiveness of XGBoost's feature engineering 
and interaction modeling. System B’s dendrogram illustrated the benefits of 
tuning, showcasing more refined clustering patterns. 

• Uniform branch lengths across both systems suggest a robust hierarchical 
alignment between pitch types, particularly in System B, where the tuning 
resulted in improved feature harmonization. 

 
 

	
					

	

SHAP (SHapley Additive exPlanations) Analysis 

SHAP values provide a powerful framework for explaining machine learning model 
predictions by quantifying the impact of individual features on specific outcomes. The 
results from SHAP summary plots for both System A and System B revealed crucial 
insights into the relative importance and directional influence of features for each pitch 
type. Below is a detailed breakdown of the findings for each system. 

System A SHAP Analysis: 

1. Fastball Predictions: 

o Key Features: 

§ pitch_initial_speed_a: Dominated the prediction, with higher 
speeds positively correlating with Fastball classification. SHAP 
values above 1 consistently aligned with pitches over 90 mph. 

§ break_z_a: Played a secondary role, with vertical breaks below 
the batter's swing plane reducing the likelihood of classification as 
a Fastball. 



o Impact: The predictive power of pitch_initial_speed_a confirmed its critical 
importance, but the limited contribution of other features suggested room 
for improvement in capturing Fastball dynamics. 

2. Slider Predictions: 

o Key Features: 

§ break_x_a: Showed a strong influence, with SHAP values peaking 
in the range of -6 to -4 inches of horizontal movement. 

§ pitch_initial_speed_a: Played a moderate role, but SHAP values 
indicated weaker dependency compared to Sliders in System B. 

o Impact: Horizontal break clearly distinguished Sliders, but inconsistencies 
in feature importance across predictions hinted at noise in the data. 

3. Curveball Predictions: 

o Key Features: 

§ break_x_a: Significantly influenced predictions, with positive 
SHAP values correlating to exaggerated horizontal break (more 
than -4 inches). 

§ break_z_a: Non-linear effects were observed, as high vertical 
breaks were linked to Curveball predictions. 

o Impact: The interplay of horizontal and vertical breaks reflected good 
separability for Curveballs, albeit with potential over-reliance on a narrow 
feature range. 

4. Changeup Predictions: 

o Key Features: 

§ pitch_initial_speed_a: Moderate impact, with slightly slower 
speeds correlating to Changeup classification. 

§ break_z_a: Added subtle influence, but less impactful compared 
to other pitch types. 

o Impact: The lack of strong SHAP contributions from diverse features 
indicated poorer feature engineering for Changeups in System A. 

System B SHAP Analysis: 

1. Fastball Predictions: 

o Key Features: 



§ pitch_initial_speed_b: Dominated predictions, mirroring the trend 
observed in System A but with higher SHAP values indicating 
greater predictive confidence. 

§ break_z_b: Secondary influence, refining predictions by 
incorporating vertical movement variations. 

o Impact: Enhanced feature representation improved Fastball prediction 
accuracy, minimizing misclassifications with Sliders. 

2. Slider Predictions: 

o Key Features: 

§ break_x_b: Most critical, with SHAP values strongly tied to 
negative horizontal movement (e.g., -5 to -3 inches). 

§ spinrate_b: Emerged as a unique contributor, differentiating 
Sliders from Curveballs. 

o Impact: The additional influence of spin rate highlighted improved feature 
harmonization for Slider predictions, reducing overlap with Curveballs. 

3. Curveball Predictions: 

o Key Features: 

§ break_z_b: Dominated predictions, with high vertical movement 
(>2 inches) positively influencing Curveball classification. 

§ spinrate_b: Reinforced classification by aligning with expected 
rotational dynamics. 

o Impact: Superior feature engineering enabled clear separation of 
Curveballs, leveraging vertical break and spin rate more effectively than 
System A. 

4. Changeup Predictions: 

o Key Features: 

§ pitch_initial_speed_b: Most influential, with slower speeds strongly 
linked to Changeup predictions. 

§ break_z_b: Played a moderate role, fine-tuning predictions with 
vertical movement cues. 

o Impact: Improved performance compared to System A, as SHAP values 
reflected a more balanced reliance on multiple features. 



Cross-System Comparison: 

• Feature Importance Hierarchy: System B consistently demonstrated a broader 
distribution of impactful features across pitch types, integrating spin rate and 
movement metrics more effectively. 

• Prediction Confidence: SHAP values in System B revealed tighter clustering 
around high-impact features, underscoring better predictive confidence and 
reduced noise. 

• Interpretability: Force plots highlighted the nuanced interplay of features for 
System B, with clearer, more actionable explanations for individual predictions. 

Conclusion: 

The SHAP analysis underscored the advantages of System B's improved feature 
engineering and model robustness. By leveraging a diverse range of features and 
capturing their interactions more effectively, System B achieved superior interpretability 
and prediction accuracy, particularly for Sliders and Curveballs. 

 
 

	
					


